3.126 \(\int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx\)

Optimal. Leaf size=46 \[ \frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d} \]

[Out]

(Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d)

________________________________________________________________________________________

Rubi [A]  time = 0.0220375, antiderivative size = 46, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 14, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {2649, 206} \[ \frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a \cos (c+d x)+a}}\right )}{\sqrt{a} d} \]

Antiderivative was successfully verified.

[In]

Int[1/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(Sqrt[2]*ArcTanh[(Sqrt[a]*Sin[c + d*x])/(Sqrt[2]*Sqrt[a + a*Cos[c + d*x]])])/(Sqrt[a]*d)

Rule 2649

Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2/d, Subst[Int[1/(2*a - x^2), x], x, (b*C
os[c + d*x])/Sqrt[a + b*Sin[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{\sqrt{a+a \cos (c+d x)}} \, dx &=-\frac{2 \operatorname{Subst}\left (\int \frac{1}{2 a-x^2} \, dx,x,-\frac{a \sin (c+d x)}{\sqrt{a+a \cos (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{2} \tanh ^{-1}\left (\frac{\sqrt{a} \sin (c+d x)}{\sqrt{2} \sqrt{a+a \cos (c+d x)}}\right )}{\sqrt{a} d}\\ \end{align*}

Mathematica [A]  time = 0.0116876, size = 40, normalized size = 0.87 \[ \frac{2 \cos \left (\frac{1}{2} (c+d x)\right ) \tanh ^{-1}\left (\sin \left (\frac{1}{2} (c+d x)\right )\right )}{d \sqrt{a (\cos (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/Sqrt[a + a*Cos[c + d*x]],x]

[Out]

(2*ArcTanh[Sin[(c + d*x)/2]]*Cos[(c + d*x)/2])/(d*Sqrt[a*(1 + Cos[c + d*x])])

________________________________________________________________________________________

Maple [C]  time = 0.16, size = 54, normalized size = 1.2 \begin{align*}{\frac{\sqrt{2}}{d}\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ){\it InverseJacobiAM} \left ({\frac{dx}{2}}+{\frac{c}{2}},1 \right ){\frac{1}{\sqrt{ \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}a}}} \left ({\it csgn} \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) \right ) ^{-1}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(a+cos(d*x+c)*a)^(1/2),x)

[Out]

1/d*2^(1/2)/(cos(1/2*d*x+1/2*c)^2*a)^(1/2)/csgn(cos(1/2*d*x+1/2*c))*cos(1/2*d*x+1/2*c)*InverseJacobiAM(1/2*d*x
+1/2*c,1)

________________________________________________________________________________________

Maxima [B]  time = 1.8937, size = 122, normalized size = 2.65 \begin{align*} \frac{\sqrt{2} \log \left (\cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right ) - \sqrt{2} \log \left (\cos \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 2 \, \sin \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + 1\right )}{2 \, \sqrt{a} d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

1/2*(sqrt(2)*log(cos(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 + 2*sin(1/2*d*x + 1/2*c) + 1) - sqrt(2)*log(c
os(1/2*d*x + 1/2*c)^2 + sin(1/2*d*x + 1/2*c)^2 - 2*sin(1/2*d*x + 1/2*c) + 1))/(sqrt(a)*d)

________________________________________________________________________________________

Fricas [A]  time = 1.58576, size = 347, normalized size = 7.54 \begin{align*} \left [\frac{\sqrt{2} \log \left (-\frac{\cos \left (d x + c\right )^{2} - \frac{2 \, \sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sin \left (d x + c\right )}{\sqrt{a}} - 2 \, \cos \left (d x + c\right ) - 3}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right )}{2 \, \sqrt{a} d}, -\frac{\sqrt{2} \sqrt{-\frac{1}{a}} \arctan \left (\frac{\sqrt{2} \sqrt{a \cos \left (d x + c\right ) + a} \sqrt{-\frac{1}{a}}}{\sin \left (d x + c\right )}\right )}{d}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[1/2*sqrt(2)*log(-(cos(d*x + c)^2 - 2*sqrt(2)*sqrt(a*cos(d*x + c) + a)*sin(d*x + c)/sqrt(a) - 2*cos(d*x + c) -
 3)/(cos(d*x + c)^2 + 2*cos(d*x + c) + 1))/(sqrt(a)*d), -sqrt(2)*sqrt(-1/a)*arctan(sqrt(2)*sqrt(a*cos(d*x + c)
 + a)*sqrt(-1/a)/sin(d*x + c))/d]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \cos{\left (c + d x \right )} + a}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))**(1/2),x)

[Out]

Integral(1/sqrt(a*cos(c + d*x) + a), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{\sqrt{a \cos \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+a*cos(d*x+c))^(1/2),x, algorithm="giac")

[Out]

integrate(1/sqrt(a*cos(d*x + c) + a), x)